

Solve by matrix Method:
$$\begin{cases}
2 - 3y + 7 = 2 \\
4x - 12y + 47 = 8
\end{cases}$$

$$\begin{cases}
-12 + 18 \\
-2x + 6y - 27 = -4
\end{cases}$$

$$\begin{cases}
-4 \times 1 + 72 + 72 \\
(2) \times 1 + 73 - 73
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
2 \times 1 + 73 - 73
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 2 \\
0 - 2 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 4
\end{cases}$$

$$\begin{cases}
1 - 3 - 1 + 4
\end{cases}$$

Index=3
Radicand =
$$\chi^2$$

Index=7, Radicand = χ^2

No index Radicand = χ^2

index=2

When index is even:

Radicand & Answer => Non-negative.

When index is odd:

Radicand & Answer => Both must have Same Sign

$$\sqrt[4]{x} = y \implies y^n = x$$
Answer = Radiand

 $\sqrt[4]{x} = y \implies y^4 = x$
 $y \ge 0, x \ge 0$
 $\sqrt[4]{x} = y \implies y^5 = x$
 $x \in y \text{ have Same Sign both + or both -}$

Some operations

$$\frac{1}{2} \cdot \frac{1}{3} = \chi^{\frac{1}{2}} \cdot \frac{1}{3} = \chi^{\frac{1}{2} + \frac{1}{3}}$$
Exponential

$$\frac{1}{2} \cdot \frac{1}{3} = \chi^{\frac{1}{2} + \frac{1}{3}}$$

$$= \chi^{\frac{5}{6}}$$
Exponential

$$\frac{1}{2} \cdot \frac{1}{3} = \chi^{\frac{1}{2} + \frac{1}{3}}$$

$$= \chi^{\frac{5}{6}}$$

$$\frac{1}{2} \cdot \frac{1}{3} = \chi^{\frac{1}{2} + \frac{1}{3}}$$

$$= \chi^{\frac{5}{6}}$$

$$\frac{1}{2} \cdot \frac{1}{3} = \chi^{\frac{1}{2} + \frac{1}{3}}$$

$$= \chi^{\frac{5}{6}}$$

$$= \chi^{\frac{5}{6}}$$

$$= \chi^{\frac{5}{6}}$$

$$= \chi^{\frac{5}{6}}$$

$$= \chi^{\frac{5}{6}}$$

$$= \chi^{\frac{5}{6}}$$

$$= \sqrt{\chi^{\frac{5}{6}}}$$

$$= \chi^{\frac{5}{6}}$$

$$= \chi$$

Simplify:
$$\sqrt[3]{\chi^2} \cdot \sqrt[4]{\chi^1}$$

= $\chi^{\frac{2}{3}} \cdot \chi^{\frac{1}{4}}$

= $\chi^{\frac{3}{3} + \frac{1}{4}}$

= $\chi^{\frac{11}{12}} = \sqrt[2]{\chi^{\frac{11}{12}}}$

Simplify
$$\frac{5\sqrt{x^3}}{\sqrt[3]{x^1}} = \frac{x^{\frac{3}{5}}}{\sqrt{x^2}} = \frac{3}{x^5} - \frac{1}{2}$$

Exponential Rule $\frac{x}{\sqrt[3]{x^1}} = \frac{x}{\sqrt[3]{x^1}} = \frac{x^{\frac{3}{5}}}{\sqrt[3]{x^1}} = \frac{x^{\frac$

Simplify:
$$5\sqrt{x^3} \cdot 3\sqrt{x}$$

$$\frac{\sqrt{3}}{\sqrt{3}} \cdot \sqrt{3}$$

$$\frac{\sqrt{3}}{\sqrt{3}} \cdot$$

Some Properties:

$$\sqrt{A} \sqrt{B} = \sqrt{AB}$$
 $\sqrt{AB} = \sqrt{AB}$
 \sqrt{AB}

Simplify
$$(\sqrt{2} + 1)(\sqrt{2} - 1)$$

$$= \sqrt{2}\sqrt{2} - \sqrt{2}\cdot 1 + 1\cdot\sqrt{2} - 1\cdot 1$$

$$= \sqrt{4} - \sqrt{2} + \sqrt{2} - 1 = 2 - 1 = 1$$

$$= \sqrt{4} - \sqrt{2} + \sqrt{2} - 1 = 2 - 1 = 1$$

$$= \sqrt{4} - \sqrt{2} + \sqrt{2} - 1 = 2 - 1 = 1$$

$$= \sqrt{4} - \sqrt{2} + \sqrt{2} - 1 = 2 - 1 = 1$$

$$= \sqrt{4} - \sqrt{2} + \sqrt{2} - 1 = 2 - 1 = 1$$

$$= \sqrt{4} - \sqrt{2} + \sqrt{2} - 1 = 2 - 1 = 1$$

$$= \sqrt{4} - \sqrt{2} + \sqrt{2} - 1 = 2 - 1 = 1$$

$$= \sqrt{4} - \sqrt{2} + \sqrt{2} - 1 = 2 - 1 = 1$$

$$= \sqrt{4} - \sqrt{2} + \sqrt{2} - 1 = 2 - 1 = 1$$

$$= \sqrt{4} - \sqrt{2} + \sqrt{2} - 1 = 2 - 1 = 1$$

$$= \sqrt{4} - \sqrt{2} + \sqrt{2} - 1 = 2 - 1 = 1$$

$$= \sqrt{4} - \sqrt{2} + \sqrt{2} - 1 = 2 - 1 = 1$$

$$= \sqrt{4} - \sqrt{2} + \sqrt{2} - 1 = 2 - 1 = 1$$

$$= \sqrt{4} - \sqrt{2} + \sqrt{2} - 1 = 2 - 1 = 1$$

$$= \sqrt{4} - \sqrt{2} + \sqrt{2} - 1 = 2 - 1 = 1$$

$$= \sqrt{4} - \sqrt{2} + \sqrt{2} - 1 = 2 - 1 = 1$$

$$= \sqrt{4} - \sqrt{2} + \sqrt{2} - 1 = 2 - 1 = 1$$

$$= \sqrt{4} - \sqrt{2} + \sqrt{2} - 1 = 2 - 1 = 1$$

$$= \sqrt{4} - \sqrt{2} + \sqrt{2} + \sqrt{2} - 1 = 2 - 1 = 1$$

$$= \sqrt{4} - \sqrt{2} + \sqrt{2} + \sqrt{2} - 1 = 2 - 1 = 1$$

$$= \sqrt{4} - \sqrt{2} + \sqrt{2} + \sqrt{2} - 1 = 2 - 1 = 1$$

$$= \sqrt{4} - \sqrt{2} + \sqrt{2}$$

Solving Simple Radical Equation:

$$\sqrt[3]{x-3} = 5$$

Square both Sides

 $(\sqrt[3]{x-3}) = (5)$
 $x-3 = 25$
 $x=28$
 $\sqrt[3]{28-3} \stackrel{?}{=} 5$
 $\sqrt[3]{25} \stackrel{?}{=} 5$
 $\sqrt[3]{25} \stackrel{?}{=} 5$

Solve
$$3\sqrt{2x+1} - 5 = 0$$

$$3\sqrt{2x+1} = 5$$

$$(3\sqrt{2x+1}) = (5)$$

$$2x+1 = 125$$

$$2x = 124$$

$$3\sqrt{125} - 5 = 0$$

$$5 - 5 = 0$$

$$(62)$$

Solve
$$\sqrt{2x+6} + 3 = 1$$

I solate the radical

 $2x+6 = 4$
 $2x+6 = 4$
 $2x+6 = 4$
 $2x = 4-6$
 $2x = -2$

Check

Index=2

 $\sqrt{2x+6} = -2$
 $\sqrt{3(-1)+6} = -2$
 $\sqrt{3(-1)+6} = -2$
 $\sqrt{3(-1)+6} = -2$
 $\sqrt{3(-1)+6} = -2$

No Solution

 $\sqrt{3(-1)+6} = -2$

extraneous

 $\sqrt{3(-1)+6} = -2$
 $\sqrt{3(-1)+6} = -2$
 $\sqrt{3(-1)+6} = -2$

Solution

Solve
$$\sqrt[3]{2x-7} = \sqrt[3]{x+5} = 0$$
Isolate one radial
$$\sqrt[3]{2x-7} = \sqrt[3]{x+5}$$

$$2x-7 = x+5 \implies x=12$$

$$2x-7 = x+5 \implies x=12$$

Class QZ 25 Evaluate:

Valuate:

$$\begin{vmatrix} 1 & 3 & -4 \\ 1 & -1 & 5 \\ 2 & 1 \end{vmatrix} = 2 \begin{vmatrix} -1 & 5 \\ 2 & 1 \end{vmatrix} - 3 \begin{vmatrix} 1 & 5 \\ 3 & 1 \end{vmatrix} + (-4) \begin{vmatrix} 1 & -1 \\ 3 & 2 \end{vmatrix}$$

$$= 2(-1 - 10) - 3(1 - 15) - 4(2 + 3)$$

$$= -22 + 42 - 20 = 0$$